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A B S T R A C T

In the “Internet+” era, involving third-party Internet recycling platforms (IRPs) has revolutionized the operation
models of closed-loop supply chains (CLSCs) in China. This study explores the impact of technological in-
novation, Big Data marketing and overconfidence on supply chain member decision-making. We propose a two-
stage remanufacturing CLSC dynamic model consisting of a manufacturer, an IRP, and a supplier based on
differential game theory. By comparing the optimal decisions of each member in three scenarios, we find that the
IRP’s overconfident behavior is beneficial to both the manufacturer and the IRP but will damage the supplier's
profit. Although a suitable cost-sharing ratio can enable the manufacturer and IRP to achieve a “win–win”
situation, an excessive level of confidence will inhibit the incentives of the cost-sharing strategy, negatively
affecting the manufacturer's interests. Interestingly, a cost-sharing contract will become inefficient under certain
conditions, i.e., highly efficient level of technological innovation, highly efficient Big Data marketing, and a high
level of overconfidence, negatively affecting the manufacturer’s interests. Additionally, technological innovation
efficiency and marketing efficiency will have different effects on the IRP's recycling price. A cost-sharing contract
and the IRP’s overconfidence will prompt the IRP to exert more efforts on technological innovation and Big Data
marketing and to significantly reduce the manufacturing costs and recycling costs for all members. Notably,
although the IRP’s overconfidence and cost-sharing strategies may damage the supplier’s profit, the total profit of
the CLSC increases.

1. Introduction

With the deterioration of environmental resources, recycling and
remanufacturing have become critical issues for enterprises and gov-
ernments. In recent years, the rapid development of the Internet and e-
commerce has led to the explosive growth of global data, which has also
brought new opportunities and challenges to closed-loop supply chain
(CLSC) management. Cloud computing technology has become a ne-
cessary means for enterprises to process large amounts of data (Liu & Yi,
2017) while also promoting innovation in traditional recycling models.
Therefore, Big Data and cloud computing technology are valuable re-
sources for all enterprises, especially in the field of supply chain man-
agement (Hazen, Skipper, Ezell, & Boone, 2016).

As an important part of CLSCs, recycling and remanufacturing are
considered an indispensable strategy for many manufacturing en-
terprises due to the economic and environmental benefits brought by

recycling activities (Heydari, Govindan, & Jafari, 2017). For example,
BMW added remanufacturing to its production process many years ago
and has been remanufacturing high-value components such as engines
and starter motors (Xu, Li, & Feng, 2019). Moreover, BMW’s re-
manufacturing business has driven the development of other industries,
such as the testing industry. It turns out that recycling and re-
manufacturing can significantly improve profitability and business
capabilities for manufacturing enterprises (Heydari et al., 2017).

The arrival of the Industry 4.0 era has made increasingly more
companies aware of the importance of data resources (Liu & Yi, 2017).
Internet platforms and data service companies have emerged to help
optimize supply chain management. These Internet platforms have a
large amount of user data and advanced cloud computing technology.
They can accurately segment customers based on product character-
istics and user behavior (Waller & Fawcett, 2013) and provide Big Data
targeted advertising (BDTA) for firms or consumers (Liu & Yi, 2017).

https://doi.org/10.1016/j.cie.2020.106538
Received 16 September 2019; Accepted 7 May 2020

⁎ Corresponding author at: School of Business, Central South University, 932 South Lushan Road, Changsha 410083, PR China.
E-mail addresses: xzhcsu@csu.edu.cn (Z. Xiang), Xumljian@163.com (M. Xu).

1 Present address: School of Business, Central South University, 932 South Lushan Road, Changsha 410083, PR China.

Computers & Industrial Engineering 145 (2020) 106538

Available online 16 May 2020
0360-8352/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2020.106538
https://doi.org/10.1016/j.cie.2020.106538
mailto:xzhcsu@csu.edu.cn
mailto:Xumljian@163.com
https://doi.org/10.1016/j.cie.2020.106538
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2020.106538&domain=pdf


For example, Twitter has gained enormous benefits through its data
leasing business (Naimi & Westreich, 2013). Big Data technology has
also been used extensively in CLSC management. To improve recycling
efficiency, many manufacturers and remanufacturers have established
recycling valuation systems to obtain Big Data information on used
products. In China, in addition to their own databases, manufacturers
collaborate with third-party Internet recycling platforms (IRPs). Com-
pared with manufacturers, IRPs have a variety of recycling channels
and diverse data and can use various Big Data marketing strategies to
achieve business goals based on different types of consumers. For in-
stance, Apple, Huawei (a Chinese collective multinational consumer
electronics company), Dell and Samsung cooperate with IRPs such as
JD and Aihuishou (JD and Aihuishou are Chinese e-commerce plat-
forms) to sell their products online/offline. IRPs can capture users’
behavior trajectories from the web browsing history (e.g., information
published by social networking sites, various bank card consumption
records, global positioning system (GPS) location data) to analyze
consumer demands. Then, IRPs develop Big Data marketing strategies
to inform consumers of various recycling policies and information, to
improve consumers' environmental awareness, and to encourage more
people to participate in recycling activities (Xiang & Xu, 2019). Dif-
ferent from traditional recycling models, consumers can return used
products through online recycling channels such as JD and Aihuishou
(Xu, Zhang, Zhao, Cheng, & Ouyang, 2015); meanwhile, the upstream
manufacturing enterprises in CLSCs can also obtain consumer in-
formation and recycled products from the IRPs and extract residual
value from remanufacturing. Such practices have shown that the in-
volvement of IRPs not only optimizes the CLSC process but also
achieves a new strategy that constitutes a basis on which to compete
(Hazen et al., 2016).

As recycling models become more specialized, manufacturers and
IRPs must not only consider marketing strategies but also continuously
optimize technologies to improve the efficiency of recycling. This ar-
ticle refers to such technological inputs as technological innovations
(Reimann, Xiong, & Zhou, 2019). Recyclers often face risks of un-
certainty regarding the quality of recycled parts. Some parts can be
restored to the original quality level with minor repair, whereas some
poor-quality parts require more sophisticated processing techniques to
restore the original condition. Additionally, the recovery level of re-
cycled products depends on the recycling efficiency and processing
technologies of the recycler (Habibi, Battaïa, Cung, & Dolgui, 2017).
For example, in China, some professional online recycling platforms,
such as Aihuishou, have a complete quality valuation system and ad-
vanced processing technologies to deal with the various quality levels of
used products. These innovative firms have successfully transitioned
from single material recovery to value added recovery through a series
of technical treatments, greatly enhancing the profitability of the re-
cycling industry (Bhattacharya & Kaur, 2015).

Corporate leaders often make irrational decisions. For example, they
may be overconfident in their investment decisions. Plous (1993) ar-
gues that “no problem in judgment and decision-making is more pre-
valent and potentially disastrous than overconfidence”. From a tradi-
tional perspective, overconfidence is considered a disadvantage that
may result in the failure of business operations, such as unbalanced
stocks (Ren & Croson, 2013) and unprofitable investments (Heaton,
2002). This article further studies the traditional perspective, specifi-
cally by considering the overconfident behavior of IRPs in Big Data
marketing decisions.

Although CLSC management has attracted tremendous attention,
most work focuses on a CLSC system consisting of one manufacturer,
one retailer or one third-party recycler, and it ignores the Big Data
environment. Considering the context of the Big Data environment and
the overconfident behavior of decision makers, this paper studies a
CLSC system consisting of a supplier, a manufacturer and an IRP, and it
analyzes the optimal decisions of supply chain members in three sce-
narios: pricing decisions, technological innovation investment and Big

Data marketing decisions. This paper mainly explores the following
issues: (1) What impact does the involvement of the IRP have on the
upstream manufacturing enterprises in a CLSC? (2) How does the IRP’s
overconfidence affect members’ decision-making? (3) Are technological
innovation and Big Data marketing beneficial to all members of the
supply chain in different scenarios? (4) Can the manufacturer's cost-
sharing strategy increase the profitability of the CLSC?

The contributions of this paper are summarized as follows:
1) Many existing studies on CLSCs have focused on a static en-

vironment, ignoring Big Data contexts (Genc & Giovanni, 2017;
Savaskan, Bhattacharya, & Van Wassenhove, 2004). Motivated by the
previous literature (Giovanni, 2018; Guo, Qu, Tseng, Wu, & Wang,
2018), this article modifies a recycling function related to Big Data
marketing effects and designs a differential game model of a CLSC in-
volving an IRP to better capture realistic recycling-manufacturing
processes in a dynamic environment.

2) Few studies have considered the quality levels of recycled pro-
ducts. In this paper, we extend a traditional static one-stage re-
manufacturing CLSC model to a dynamic two-stage CLSC model that
involves a manufacturer, a supplier and an IRP and that considers the
quality levels of recycled products. The quality characteristics of used
products can be highlighted by means of classified remanufacturing.
Our work supplements the studies by Giovanni (2018) and Xiang
(2019) from a theoretical perspective.

3) In addition to marketing strategies, this paper considers the
technological innovation investment of an IRP. Our results show that
the technological innovations of an IRP can significantly reduce the
production cost of the upstream enterprises in the supply chain, posi-
tively affecting the enterprise and the environment.

4) Research on overconfidence has been widely explored in field of
finance and management (Sandroni & Squintani, 2013). In the supply
chain, most work focuses on the impact of overconfidence on the in-
ventory of retailers and manufacturers (Xu, Shi, Du, Govindan, &
Zhang, 2018). Different from existing work, this paper explores the
impact of the IRP’s overconfident behavior on firms’ decision-making
and profit from the perspective of the IRP. The results show that under
certain conditions, the IRP’s overconfidence does not hurt the overall
performance of the CLSC, and its effect on each member of the supply
chain also varies. In addition, the IRP's overconfidence can affect the
effectiveness of the manufacturer's cost-sharing strategy.

The rest of this article is organized into the following parts. Section
2 reviews the existing works relevant to our study Section 3 describes
the model and theoretical assumptions in detail. Section 4 provides
optimal solutions for the model in three scenarios. Section 5 discusses
the comparison results of the optimal strategies of each member in
three scenarios, and analyzes the sensitivity of the optimal strategies.
Section 6 analyzes the profits of each member through numerical si-
mulation. Section 7 summarizes this paper and discusses future re-
search directions.

2. Literature review

The literature related to this paper involves four areas: CLSC deci-
sion-making issues, research on CLSC Big Data technology applications,
the role of technological innovations in supply chains, and studies on
overconfidence.

A CLSC consists of a forward supply chain (FSC) and a reverse
supply chain (RSC) (Guide, Jayaraman, & Linton, 2003). In most stu-
dies, the CLSC consists of a manufacturer, a retailer and a third-party
recycler. Comparing three recycling methods, Savaskan et al. (2004)
concluded that retailer recycling is the best choice. De Giovanni and
Zaccour (2014) constructed a two-period CLSC model and found that
when a third-party recycler has high operational efficiency, the man-
ufacturer licenses recycling work to the third-party recycler rather than
to the retailer. Mohan, Modak, Panda, and Sankar (2018) considered
the quality level of recycled products based on Savaskan's model (2004)
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and found that sales prices and quality levels are directly related to the
amount of recycling. These studies assume that a CLSC is operating in a
static environment. Guide et al. (2003) emphasized the importance of
time in a CLSC because recycling-remanufacturing is a dynamic phe-
nomenon. Huang, Nie, and Tsai (2017) used a differential game to
construct a CLSC model consisting of one manufacturer and one retailer
and found that the level of recycling effort increased as the recovery
uncertainty increased. Taking the battery recycling industry as an ex-
ample, Giovanni (2018) achieved the Pareto optimality of a dynamic
CLSC by maximizing incentives in this industrial context.

Big Data techniques have been widely used in marketing across
industries. Hampton et al. (2013) found that implementing Big Data
management can optimize green supply chains and the ecological en-
vironment. Hazen, Boone, Ezell, and Jones-Farmer (2014) introduced a
view of data quality in supply chain management and elaborated on
methods of data monitoring; additionally, they explored the impact of
Big Data and predictive analytics (BDPA) on environmental and social
sustainability (Hazen et al., 2016). Liu and Yi (2017) proposed pricing
policies that take into account BDTA and the green degree of products
in a Big Data environment. Ahearn, Armbruster, and Young (2016)
argued that Big Data technology can identify potential risks in a food
supply chain and help reduce management costs. Studying the re-
cycling-remanufacturing issue, Xu et al. (2019) considered a Big Data
quality valuation system and discussed the impact of the valuation
system on pricing strategies. Notably, the number of studies about ap-
plications of Big Data technology in CLSCs is still limited, and most of
them focus on the FSC and marketing.

Technological innovations bring new opportunities and challenges
to enterprises. Wu (2012) studied the impact of the detachability of
recycled products on new and remanufactured products and found that
an increase in detachability has a negative impact on the sales of new
products. Chavez et al. (2015) argued that technological innovation not
only optimizes production but also reduces inventory waste.
Rothenberg, Pil, and Maxwell (2001) discussed the application of
technological innovation in green supply chains and found that tech-
nological innovation can maximize the utilization of raw materials to
improve process efficiency. Genc and Giovanni (2018) pointed out that
innovation-led lean programs are beneficial to manufacturers in a CLSC
but have limited impact on suppliers. Most studies conclude that
technological innovation can bring competitive advantages to en-
terprises in a fierce market competition environment (Aydin & Parker,
2018).

Enterprises often make some irrational decisions when they face the
above investment decisions. Most studies agree that “overconfidence is
one of the most reliable findings of decision psychology” (Grieco &
Hogarth, 2009; Hilary & Menzly, 2006). In the insurance industry,
Sandroni and Squintani (2013) concluded that overconfidence is a po-
tential risk for companies and provided a contract to reduce corporate
losses. Ren and Croson (2013) empirically demonstrated that over-
confidence can lead to an increase in inventory and introduced a new
technology that reduces the risk of increased inventory. In contrast to

previous research findings, Lu et al. (2015) found that a supplier’s
overconfidence does not damage supply chain performance under cer-
tain conditions. Xu et al. (2018) analyzed the impact of a retailer’s
overconfidence on a duopolistic supply chain and found that a retailer
with overconfidence will have a certain advantage in the market.

In summary, most of these works study the decision-making pro-
blems of members from the perspective of manufacturers or retailers in
a FSC based on game theories. In comparison, this study not only
considers the impact of multiple factors such as overconfidence, tech-
nological innovation, and Big Data marketing on a CLSC from the
perspective of the IRP but also considers the dynamic characteristics of
the CLSC.

3. Model framework

The entire CLSC system consists of an IRP (P), a manufacturer (M),
and a supplier (S). All players’ decisions are aimed at maximizing their
own interests. Fig. 1 depicts the decision-making process of a CLSC, and
the definitions of model notation are presented in Table 1. In the entire
decision-making process, the IRP is responsible for the recycling of used
products through its own technical advantages and Big Data marketing.
Then, the IRP filters and classifies the recycled products according to
the quality level. After the recycled products are dismantled, parts of
better quality can be sold to the manufacturer at a higher price f. These
parts of better quality need to be restored only by performing some
cosmetic changes/repairs (such as oiling/greasing, testing or re-
painting), which saves the manufacturer a considerable amount with
regard to remanufacturing costs. Thus, the manufacturer is willing to
give the IRP a higher transfer price f. The parts of lower quality cannot
be remanufactured directly by the manufacturer; instead, they need to
be sent to the supplier to be repaired by replacing/refurbishing some
parts (Bhattacharya & Kaur, 2015). Due to the high cost of repairing
parts, the transfer price g that the supplier pays to the IRP is lower than
the transfer price f that the manufacturer pays to the IRP. The supplier
is responsible for the production and supply of the parts required by the
manufacturer. The cost of the supplier to purchase new raw materials is
m, the manufacturing cost of parts is cs, and the wholesale price of parts
sold by the supplier to the manufacturer is w. There are two ways for
the supplier to manufacture parts. One is to buy new raw materials for
parts manufacturing; the other is to recycle used parts from the IRP for
renovation or reassembly. The manufacturer is mainly responsible for
producing products and selling them to consumers. Suppose that the
manufacturer's production cost is cm and that the product’s sales price is
p. The manufacturer also has two ways to obtain the parts needed to
make the final product: buying parts from the supplier or recycling used
parts from the IRP.

Assume that the transfer prices f and g that the manufacturer and
the supplier, respectively, pay to the IRP are exogenous variables. To
ensure that supply chain members have sufficient recycling incentives
and to ensure the sustainability of the entire CLSC system, the following
economic conditions must be met: >m g, >w f , > >f g p2 r , and

Fig. 1. Structure of the two-stage remanufacturing CLSC system.
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>g pr .
Unlike traditional third-party recyclers, the IRP has a large amount

of user traffic and can promote recycling activities and recycling po-
licies through online channels. To attract more consumers to participate
in recycling activities, the IRP needs to invest in Big Data marketing
activities, A(t). Notably, Big Data marketing includes the establishment
of user databases and targeted advertising services in the Big Data en-
vironment. Considering the dynamic characteristics of the Big Data
marketing effect, this paper refers to the model of Nerlove and Arrow
(1962) and Giovanni (2018). Suppose that the recycling quantity that
the IRP attracts through Big Data marketing at time t is t( ). The rate of
change in the recycling quantity attracted by Big Data marketing is
modeled as follows:

= = =d t
dt

t µA t t( ) ( ) ( ) ( ), (0) 00 (1)

where t( ) is a state variable, >µ 0 is the Big Data marketing effec-
tiveness parameter. > 0 denotes the decay coefficient and explains the
natural reduction in the Big Data marketing efficiency level over time.

0 is the initial recycling quantity of consumers attracted by Big Data
marketing.

Eq. (1) does not consider the effect of overconfidence in the dy-
namic recovery process; thus, Eq. (1) is a benchmark model. In fact,
many studies have confirmed that leaders display overconfident beha-
vior in decision-making (Ren & Croson, 2013) and that this behavior
will have different degrees of impact on the market (L. Xu et al., 2018),
such as advertising investment issues or pricing inventory issues (Ma,
Li, & Bao, 2016). To further explore the impact of overconfidence on
the decision-making of CLSC members, this paper refers to the model of
Ma (2016) and Xu model (2018) and modifies Eq. (1) as follows:

= = +d t
dt

t µ k A t t( ) ( ) ( ) ( ) ( ) (2)

where k0 1 is the IRP’s overconfidence coefficient. Here, the
higher the value of k, the more confident the IRP is in the effect of Big
Data marketing. In particular, when =k 0, the IRP has no over-
confidence in the effect of Big Data marketing. Additionally, as com-
monly seen in the marketing literature (Eyland & Zaccour, 2014; Xiang
& Xu, 2019), the Big Data marketing cost function is =C t( )A

A t( )
2

2
,

where CA is the Big Data marketing cost and is the investment cost
coefficient of Big Data marketing efforts ( > 0). The convex cost
function shows that to obtain more recycled products, the IRP may
initially invest less but must invest more efforts to further expand re-
cycling.

Liu, Anderson, and Cruz (2012) have shown that the total recycling
quantity is positively correlated with the recycling price per unit of
product. Additionally, Guo et al. (2018) considered the impact of

advertising on the recycling function based on the study of Liu (2012).
Based on the above description, the total recycling function is expressed
as follows:

= + +Q t Q ap t b t( ) ( ) ( )r0 (3)

where Q t( ) is the total recycling quantity at time t, Q0 represents the
recycling quantity of used products from consumers when the unit di-
rect recycling price equals 0, p t( )r is the unit direct recycling price that
the IRP pays to consumers, a is the sensitivity of consumers to the unit
direct recycling price ( >a 0), and b is the sensitivity of consumers to
Big Data marketing ( >b 0).

For the IRP, the better the quality of recycled products is, the higher
the profit that the IRP can obtain. In China, many Internet recycling
companies have sophisticated screening systems for recycled products.
For example, JD and Aihuishou (JD and Aihuishou are Chinese e-
commerce platforms) perform different technical treatments (such as
refurbishment, replacement and repainting) according to the quality
level of recycled products (Xiang & Xu, 2019). These companies will
invest in high-tech innovations in the processing of recycled products to
improve the quality of recycled products so that recycling companies
can obtain higher transfer prices and higher profits (Bhattacharya &
Kaur, 2015). Suppose < <0 1 is the proportion of recycled parts of
good quality (Feng, Xiao, & Chai, 2018). Based on previous assump-
tions, the IRP sells better-quality parts to the manufacturer; thus, the
quantity of the parts obtained by the manufacturer is Q. Conversely,
the proportion of parts of lower quality is 1 ; thus, the quantity of
parts obtained by the supplier is Q(1 ) . Clearly, the more used parts
the manufacturer obtains, the fewer used parts the supplier obtains, and
vice versa. Additionally, if the IRP wants to increase the proportion of
components of better quality, it must invest more in technological in-
novation in the process of dealing with used products. This paper as-
sumes that the technological innovation cost of the IRP is expressed as

=C 2

2
, where is the technological innovation cost coefficient for

improving the quality level of recycled products. The higher the value
of is, the lower the efficiency of technological innovation, and the
higher the technological innovation cost required to obtain a higher
proportion of high-quality parts. Clearly, the there are limits to the
extent to which the IRP can improve the quality of products because
technological innovation is constrained by the cost of innovation. No-
tably, this article assumes that the quality level and function of the
products remanufactured by the supplier and the manufacturer are
consistent with the new products.

In the FSC, this paper assumes that the manufacturer sells the pro-
duct directly to consumers. Our model builds on the previous literature
(Savaskan et al., 2004) by using the following classical linear consumer
demand function:

Table 1
Notations.

Notations Definition Notations Definition

The recycling quantity that the IRP attracts through Big Data marketing p The unit sales price for the manufacturer
A The Big Data marketing efforts of the IRP w The unit wholesale price for the supplier
µ Big Data marketing effectiveness parameter f The transfer price of used parts that the manufacturer pays to

the IRP
k The IRP’s overconfidence level g The transfer price of used parts that the supplier pays to the IRP

The decay rate of Big Data marketing efficiency m The cost of the supplier to purchase new raw materials
Q0 The recycling quantity of used products from consumers when the unit direct recycling

price equals 0
cs The supplier’s production cost

a The sensitivity of consumers to the unit direct recycling price cm The manufacturer's production cost
b The sensitivity of consumers to Big Data marketing The market scale of products

The investment cost coefficient of Big Data marketing efforts The sensitivity coefficient of demand to the sales price
pr The unit recycling price charged by the IRP to consumers The proportion of recycled parts of good quality
Q The total recycling quantity The technological innovation cost coefficient
D Consumer demand r The discount rate
CA The Big Data marketing cost C The technological innovation cost
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=D t p t( ) ( ) (4)

where is the market scale of products and > 0 is the sensitivity of
demand to the sales price.

To make the results of this article more reasonable, this paper makes
the following restrictive assumptions:

Assumption 1. To ensure that < <0 1, the technological innovation
cost coefficient and the sensitivity of consumers to the unit direct
recycling price a must satisfy the following conditions:

> + +
+ +

a r f g af Q
a r b µ k

( )( )( )
2 ( ) ( )

0
2 2 and < < + + +

+aQ
f g

µ k f g b Q r
f g r2

( ) ( ) ( )
( 2 ) ( )

0 2 2 0 .
Assumption 1 has dual purposes. First, the manufacturer cannot
increase the investment in technological innovation without limit,
which will cause the supplier to lose his/her enthusiasm for
recycling; thus, the investment cost limit is necessary. Second, the
proportion of parts of higher quality is guaranteed to be < <0 1.

Assumption 2. When the sensitivity of consumers to Big Data
marketing effort is large, the investment cost coefficient of Big Data
marketing will be large; that is, > +

+
b µ k
f g a a r

( )
(2 ( ) ) ( )

2 2
2 . This means that

when consumers in the market are sensitive to the level of Big Data
marketing efforts, it is impossible for the IRP to increase the level of Big
Data marketing unrestrained by cost constraints (Feng et al., 2018).

4. Model development

This section presents the differential game models developed to
examine the optimal strategies in the three scenarios. Different from the
previous literature, this paper considers the technical advantages and
the information technology for the IRP. The decision-making order for
each supply chain member is as follows: First, the IRP controls the
proportion of high-quality parts in the recycled product, which is
mainly related to the cost of technological innovationC invested by the
IRP. Second, the supplier determines the wholesale price w of the parts
after obtaining the quality information of the recycled parts from the
IRP. Third, the manufacturer determines the final sales price p of the
product based on the supplier's wholesale price and the quality in-
formation of the recovered parts. Finally, the IRP determines the re-
cycling price pr of used products and the level of Big Data marketing
investment A. Additionally, the information among the members in the
entire CLSC system is completely symmetrical.

4.1. Without considering the overconfidence of the IRP (scenario N)

The scenario N is a benchmark model. The objective of all supply
chain members is to find their own optimal strategy to maximize their
profits. According to the model assumptions in Section 3, the IRP’s
objective functional in scenario N is:

= +

J

e f t Q t g t Q t p Q t C t C t

dt

[ ( ) ( ) (1 ( )) ( ) ( ) ( ) ( )]
P
N

rt N N
r

N
A0

(5)

The manufacturer’s objective function in scenario N is as follows:

=J e p t c D t w D t t Q t f t Q t dt[( ( ) ) ( ) ( ( ) ( ) ( )) ( ) ( )]M
N rt

m
N N

0

(6)

The supplier’s objective function in scenario N is as follows:

= +

J

e w t m c D t t Q t m g t

Q t dt

[( ( ) )( ( ) ( ) ( )) ( )(1 ( ))

( )]

S
N

rt
s

N

N
0

(7)

According to optimal control theory, the Hamilton functions for the
IRP, manufacturer and supplier are obtained by Eqs. (8), (9) and (10),

respectively. Additionally, for the convenience of writing, the time t is
omitted below.

The IRP’s Hamilton function is as follows:

= + + + + +

+ + +

H p A u f Q ap b g Q ap b

p Q ap b u µA

( ( ), ( ), , ) ( ) (1 )( )

( ) ( )
P
N

r P
N

r r

r r
A

P
N

0 0

0 2 2
2 2

(8)

The manufacturer’s Hamilton function is as follows:

= + + + +
H p u

p c w p w f Q ap b u µA
( , )

( )( ) ( ) ( ) ( )
M
N

M
N

m r M
N

0

(9)

The supplier’s Hamilton function is as follows:

= + +

+ + +
+

H w u w m c p Q ap b

m g Q ap b
u µA

( , ) ( )( ( ))

( )(1 )( )
( )

S
N

S
N

s r

r

S
N

0

0

(10)

where u u u( , , )P
N

M
N

S
N represent the shadow price associated with the

state variable t( ). The optimal strategies for each game player under
scenario N are given in Proposition 1.

Proposition 1. The optimal equilibrium strategies for the IRP,
manufacturer and retailer under scenario N are given as follows:

= +p t f g t g a b t Q
a

( ) (( ) ( ) ) ( )
2r

N
N N

0
(11)

=A t u t µ( ) ( )N P
N

(12)

= + +t f g ag b t Q
f g a

( ) ( )( ( ) )
2 ( )

N
N

0
2 (13)

= + +p t w t c( ) ( ( ) )
2

N
N

m

(14)

=
+ + + +

w t

a f g t Q ag b t t m c c

( )

( )( ( )) ( ( )) ( ) ( )
2

N

N N N
m s

2
0

(15)

Under scenario N, the optimal trajectory of the recycling quantity
attracted by Big Data marketing is calculated as follows:

= +t( ) ( ¯ )e ¯N N t N
0 N (16)

The steady state of the system is given as follows:

= +
+ +

ag Q bµ
r a f g r a b µ

¯ ( )
2 ( ) ( ) ( )

N 0
2

2 2 2 2 (17)

= +
+ +

u ag Q b
r a f g r a b µ

¯ ( )
2 ( ) ( ) ( )P

N 0
2 2 2 2 (18)

where = < 0N
ar
a2

N , = f g a( ) 22 and
= + +a a r b µ( ( 2 ) 4 )N

2 2 2 .
For the proof, see the Appendix A.

Notably, ¯N is the optimal recycling quantity attracted by Big Data
marketing at the steady state, and uP̄

N is the coordination variable at the
steady state. By substituting Eqs. (17) and (18) into Eqs. (11)–(15), the
optimal steady-state strategies for all members are easily obtained; that
is, p A p w( ¯ , ¯ , ¯ , ¯ , ¯ )r

N N N N N . Additionally, by substituting
p A p w( ¯ , ¯ , ¯ , ¯ , ¯ )r

N N N N N into Eqs. (5)–(7) without considering time t, the
optimal steady-state present values of profit for all members can be
obtained as V V V( , , )P

N
M
N

S
N . Since the expression of profit is too compli-

cated, it is omitted here.
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4.2. Considering the overconfident behavior of the IRP (scenario C)

In scenario C, this paper considers the overconfident behavior of
decision makers when the IRP determines the level of Big Data mar-
keting investment; the expression is shown in Eq. (2). The order of the
supply chain members’ decisions is consistent with scenario N. The
model developed in scenario C is expressed as follows.

The IRP’s objective function in scenario C is as follows:

= +J e f t Q t g t Q t p t Q t C C dt[ ( ) ( ) (1 ( )) ( ) ( ) ( ) ]P
C rt C C

r
C

A0

(19)

The manufacturer’s objective function in scenario C is as follows:

=

J

e p t c D t w t D t t Q t f t Q t dt[( ( ) ) ( ) ( )( ( ) ( ) ( )) ( ) ( )]
M
C

rt
m

C C
0

(20)

The supplier’s objective function in scenario C is as follows:

= +

J

e w t m c D t t Q t m g t

Q t dt

[( ( ) )( ( ) ( ) ( )) ( )(1 ( ))

( )]

S
C

rt
s

C

C
0

(21)

Similar to scenario N, the Hamilton functions for the IRP, manu-
facturer and supplier are expressed as Eqs. (21), (22) and (23), re-
spectively.

The IRP’s Hamilton function is as follows:

= + + + + +

+ +

+ +

H p A u f Q ap b g Q ap b

p Q ap b

u µ k A

( ( ), ( ), , ) ( ) (1 )( )

( )

(( ) )

P
C

r P
C

r r

r r
A

P
C

0 0

0

2 2
2 2

(22)

The manufacturer’s Hamilton function is as follows:

= + + + +

+

H p u
p c w p w f Q ap b u

µ k A

( , )
( )( ) ( ) ( )

(( ) )

M
C

M
C

m r M
C

0

(23)

The supplier’s Hamilton function is as follows:

= + +

+ + +
+ +

H w u w m c p Q ap b

m g Q ap b
u µ k A

( , ) ( )( ( ))

( )(1 )( )
(( ) )

S
C

S
C

s r

r

S
C

0

0

(24)

Obtaining the optimal equilibrium solutions of the Hamiltonian
functions, we state Proposition 2 as follows.

Proposition 2. The optimal equilibrium strategies for the IRP,
manufacturer and retailer under scenario C are given as follows:

= +p t f g t g a b t Q
a

( ) (( ) ( ) ) ( )
2r

C
C C

0
(25)

= +A t µ k u t( ) ( ) ( )C P
C

(26)

= + +t f g ag b t Q
f g a

( ) ( )( ( ) )
2 ( )

C
C

0
2 (27)

= + +p t w t c( ) ( ( ) )
2

C
C

m

(28)

=
+ + + +

w

a f g t ag b t Q t m c c( )( ( )) ( ( ) ) ( ) ( )
2

C

C C C
m s

2
0

(29)

Under scenario C, the optimal trajectory of the recycling quantity
attracted by Big Data marketing is calculated as follows:

= +t( ) ( ¯ )e ¯C C t C
0 C (30)

The steady state of the system in scenario C is given as follows:

= + +
+ + +

ag Q b µ k
r a f g r a b µ k

¯ ( ) ( )
2 ( ) ( ) ( ) ( )

C 0
2

2 2 2 2 (31)

= +
+ + +

u ag Q b
r a f g r a b µ k

¯ ( )
2 ( ) ( ) ( ) ( )P

C 0
2 2 2 2 (32)

where = < 0C
C ar

a2 and =C + + +a a r b µ k( ( 2 ) 4 ( ) )2 2 2 .
For the proof, see the Appendix A.

Similar to scenario N, by substituting Eqs. (31) and (32) into Eqs.
(25)–(29), the optimal steady-state strategies for all members in sce-
nario C are easily obtained; that is, p A p w( ¯ , ¯ , ¯ , ¯ , ¯ )r

C C C C C . Additionally,
by substituting p A p w( ¯ , ¯ , ¯ , ¯ , ¯ )r

C C C C C into Eqs. (19)–(21) without con-
sidering time t ( =t 0), the optimal steady-state present values of profit
for all members in scenario C can be obtained as V V V( , , )P

C
M
C

S
C . Due to

the complexity of the expression, it is omitted here.

4.3. The manufacturer shares the marketing cost of the IRP (scenario F)

In reality, the upstream enterprises in the CLSC will cooperate with
the IRP to promote recycling activities to obtain more recycled pro-
ducts. This section considers the situation in which the manufacturer
shares the marketing cost of the IRP based on scenario C. Assume that
is the ratio-sharing coefficient of marketing investment and represents

the percentage of the Big Data marketing cost that the manufacturer
shares with the IRP and that 0 1. The decision order of scenario
F is the same as that of scenario N and scenario C, and the differential
game model among the three members is formulated as follows.

The IRP’s objective function in scenario F is as follows:

= +

J

e f t Q t g t Q t p t Q t C

C dt

[ ( ) ( ) (1 ( )) ( ) ( ) ( ) (1 )

]

P
F

rt F F
r

F
e0

(33)

The manufacturer’s objective function in scenario F is as follows:

=

J

e p t c D t w t D t t Q t f t Q t

C dt

[( ( ) ) ( ) ( )( ( ) ( ) ( )) ( ) ( )

]

M
F

rt
m

F F

e

0

(34)

The supplier’s objective function in scenario F is as follows:

= +

J

e w t m c D t t Q t m g t

Q t dt

[( ( ) )( ( ) ( ) ( )) ( )(1 ( ))

( )]

S
F

rt
s

F

F
0

(35)

The Hamilton functions for the IRP, manufacturer and supplier are
expressed as follows.

The IRP’s Hamilton function is as follows:

= + + + + +

+ +

+ +

H p A u f Q ap b g Q ap b

p Q ap b

u µ k A

( ( ), ( ), , ) ( ) (1 )( )

( )

(1 ) (( ) )

P
F

r P
F

r r

r r
A

P
F

0 0

0

2 2
2 2

(36)

Z. Xiang and M. Xu Computers & Industrial Engineering 145 (2020) 106538

6



The manufacturer’s Hamilton function is as follows:

= + + +

+ +

H p u
p c w p w f Q ap b

A u µ k A

( , )
( )( ) ( ) ( )

2
(( ) )

M
F

M
F

m r

M
F

0
2

(37)

The supplier’s Hamilton function is as follows:

= + +

+ + +
+ +

H w u w m c p Q ap b

m g Q ap b
u µ k A

( , ) ( )( ( ))

( )(1 )( )
(( ) )

S
F

S
F

s r

r

S
F

0

0

(38)

Solving the above Hamiltonian equations, we state Proposition 2 as
follows.

Proposition 3. The optimal equilibrium strategies for the IRP,
manufacturer and retailer under scenario F are given as follows:

= +p t f g t g a b t Q
a

( ) (( ) ( ) ) ( )
2r

F
F F

0
(39)

= +A t µ k u t( ) ( ) ( )
(1 )

F P
F

(40)

= + +t f g ag b t Q
f g a

( ) ( )( ( ) )
2 ( )

F
F

0
2 (41)

= + +p t w c( ) ( )
2

F
F

m

(42)

= + + + +
w t

a f g t ag b Q t m c c
( )

( )( ( )) ( ) ( ) ( )
2

F

F F F
m s

2
0

(43)

Under scenario F, the optimal trajectory of the recycling quantity
attracted by Big Data marketing is calculated as follows:

= +t( ) ( ¯ )e ¯F F t F
0 F (44)

The steady state of the system in scenario F is given as follows:

= + +
+ + +

ag Q b µ k
r a f g r a b µ k

¯
( ) ( )

2 ( ) (1 ) ( ) ( ) (1 ) ( )

F

0
2

2 2 2 2

(45)

= +
+ + +

u
ag Q b

r a f g r a b µ k

¯

(1 ) ( )
2 ( ) (1 ) ( ) ( ) (1 ) ( )

P
F

0
2 2 2 2

(46)

where = < 0F
ar
a

(1 )
(1 )2

F and

=F + + +a a r b µ k(1 ) ( ( 2 ) (1 ) 4 ( ) )2 2 2 .
For the proof, see the Appendix A

By substituting Eqs. (45) and (46) into Eqs. (39)–(43), the optimal
steady-state strategies for all members in scenario F can be obtained as
p A p w( ¯ , ¯ , ¯ , ¯ , ¯ )r

F F F F F , Similarly, substituting p A p w( ¯ , ¯ , ¯ , ¯ , ¯ )r
F F F F F into

Eqs. (33)–(35) without considering time t ( =t 0), the optimal steady-
state present values of profit for all members in scenario F can be
obtained as V V V( , , )P

F
M
F

S
F . Due to the complexity of the expression, it is

omitted here.

5. Comparison and sensitivity analysis

In this section, we compare the optimal decisions of each member in
the three scenarios and then compare the recycling quantity in the three
scenarios. Finally, we also explore the impact of some key parameters

on the optimal strategies. Due to the complexity of the profit functions,
the impact of some key parameters on the profit functions cannot be
ascertained analytically but will be discussed in Section 6 through nu-
merical analysis.

5.1. Comparison of optimal strategies

The comparison results of the optimal steady-state strategies in the
three scenarios are given in Proposition 4.

Proposition 4. The optimal steady-state strategies under the three scenarios
have the following relationships:

< <p p p¯ ¯ ¯
r

F
r

C
r

N , < <A A A¯ ¯ ¯N C F , < <¯ ¯ ¯N C F , < <p p p¯ ¯ ¯F C N , and
< <w w w¯ ¯ ¯F C N .

Proposition 4 shows that the level of Big Data marketing and the
proportion of parts of high quality in scenario C are higher than those
in scenario N. This indicates that the IRP has high expectations re-
garding its marketing capabilities; thus, the IRP will increase its mar-
keting efforts and technological innovation investment. At the same
time, the increase in the IRP’s investment in Big Data marketing will
enhance consumers’ awareness of environmental protection, which can
reduce the recycling price without reducing the recycling quantity to
save on the unit recycling cost. Therefore, the unit recycling price in
scenario C is lower than that in scenario N. Because the increase in the
level of Big Data marketing will result in a greater recycling quantity,
which will save more on production costs for the manufacturer and
supplier, the sales price and wholesale price in scenario C are lower
than those in scenario N. Additionally, the manufacturer's cost-sharing
contract will further stimulate the IRP's marketing investment and
technological innovation investment. Therefore, compared with the
other two scenarios, in scenario F, the level of Big Data marketing and
the proportion of parts of high quality are the highest, while the IRP’s
recycling price, the manufacturer's sales price and the supplier's
wholesale price are the lowest. Notably, Xu et al. (2018) have proven
that the retailer’s overconfidence in the FSC will increase product sales.
However, Proposition 4 proves that the IRP not only has a positive
impact on the FSC but also promotes the development of the RSC; this
conclusion also supplements the previous literature.

Proposition 5. The optimal steady-state recycling quantities attracted by
Big Data marketing in the three scenarios are compared as follows:

< <¯ ¯ ¯N C F

Substituting p p p( ¯ , ¯ , ¯ )r
N

r
C

r
F and ( ¯ , ¯ , ¯ )N C F into Eq. (3), respectively,

the comparison results of the optimal steady-state total recycling
quantities in the three scenarios are as follows:

< <Q Q Q¯ ¯ ¯N C F

Proposition 5 illustrates that in scenario F, the IRP has the largest
recycling quantity through Big Data marketing. The reason is that in
Proposition 4, it is proven that due to the influence of overconfidence,
the IRP will invest more resources in Big Data marketing and that the
manufacturer's cost-sharing contract will further stimulate this beha-
vior. Thus, in scenario F, the IRP obtains the greatest amount of re-
cycling through Big Data marketing.

Proposition 4 and Proposition 5 show that although over-
confidence and cost sharing reduce the recycling price of the IRP, they
do not reduce the total recycling quantity. This result is similar to the
study by Liu and Yi (2017), who demonstrated that the Big Data en-
vironment has a positive effect on the pricing of products and the
precise marketing of advertising; however, this article has been ex-
tended on the basis. Proposition 4 and Proposition 5 consider the
impact of overconfidence on Big Data marketing decisions. The results
show that Big Data marketing can not only increase the amount of re-
cycling but also effectively reduce the unit recycling cost. Additionally,
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based on scenario C, the manufacturers' cost-sharing strategies can
encourage the IRP to further increase its investment level in Big Data
marketing based on scenario C, which can further enhance the re-
cycling quantity and reduce the unit recycling cost.

5.2. Sensitivity analysis

Section 5.1 gives the comparison results of the optimal strategies in
the three scenarios. This section conducts a sensitivity analysis to ex-
plore the impact of some key parameters on the optimal decisions of
game members.

Corollary 1. Under the three scenarios, by taking the derivatives of the
recycling price with respect to the key parameters and , the relationships
are as follows:

(1) When < <+
+ +

b µ k
f g a a r

b µ
a r

( )
(2 ( ) ) ( ) ( )

2 2
2

2 2
, > 0p̄r N

; when > +
b µ

a r( )

2 2
,

< 0p̄r N
.

(2) When < <+
+

+
+

b µ k
f g a a r

b µ k
a r

( )
(2 ( ) ) ( )

( )
( )

2 2
2

2 2
, > 0p̄rC

, > 0p̄r F
; when

> +
+

b µ k
a r

( )
( )

2 2
, < 0p̄rC

, < 0p̄r F
.

(3) > 0p̄r
N

, > 0p̄r
C

, > 0p̄r
F

.

Corollary 1 indicates that there exists a threshold ¯ ( = +
¯ b µ

a r( )

2 2
or

= +
+

¯ b µ k
a r

( )
( )

2 2
) in the three scenarios. When < ¯, the IRP’s recycling

price increases with ; when > ¯, the recycling price decreases with
. The size of ¯ is mainly determined by b, µ, a, and k. < ¯ means
that the Big Data marketing efficiency is at a high level. When the ef-
ficiency of technological innovation is lower, the IRP needs to increase
the recycling price to maintain a higher recycling volume, which can
compensate for the loss of profit due to the quality defect of the re-
cycled product. However, when the Big Data marketing efficiency is at a
low level ( > ¯), the IRP cannot expand its recycling volume due to
excessive recycling costs, and as the efficiency of technological in-
novation decreases, the profit margin of recycled products decreases.
Therefore, the IRP’s recycling price decreases with the increase in .
Additionally, assuming that is a constant, the recycling price always
increases with . This result implies that if Big Data marketing is less
efficient, then the IRP will prefer to increase the recycling quantity by
enhancing the recycling price.

Corollary 2. Under the three scenarios, for the comparative static of Āi, ī,
w̄i and p̄i (i = N, C, F) with respect to the key parameters and , the
relationships are as follows:

(1) < 0ĀN
, < 0ĀC

, < 0ĀF
, < 0

¯N
, < 0

C̄
, < 0

¯F
, > 0w̄N

,

> 0w̄C
, > 0w̄F

, > 0p̄N
, > 0p̄C

, > 0p̄F
.

(2) < 0ĀN
, < 0ĀC

, < 0ĀF
, < 0

¯N
, < 0

C̄
, < 0

¯F
, > 0w̄N

,

> 0w̄C
, > 0w̄F

, > 0p̄N
, > 0p̄C

, > 0p̄F
.

Corollary 3. Under the three scenarios, by taking the derivatives of the
steady-state recycling quantity with respect to and , the relationships are
as follows:

(1) < 0
¯N

, < 0
¯C

, < 0
¯F

, < 0
¯N

, < 0
¯C

, < 0
¯F

.

(2) < 0Q̄N
, < 0Q̄C

, < 0Q̄C
, < 0Q̄N

, < 0Q̄C
, < 0Q̄F

.

According to Corollaries 2–3, in the three scenarios, the investment
level of Big Data marketing and the proportion of parts of higher quality
decrease with and , while the wholesale price of parts and the sales
price of products increase with and . This result indicates that due to
the inefficiency of Big Data marketing and technological innovation,

the IRP’s recycling quantity will be insufficient; additionally, profit-
ability of recycled products will be reduced. The supplier and the
manufacturer will increase their production costs due to the lack of
sufficient recycled parts; thus, they will enhance the wholesale price
and sales price to maintain the profit margin of their products.

Corollary 3 shows that in the three scenarios, the recycling quantity
attracted by Big Data marketing and the total recycling quantity de-
crease with and . However, Corollary 1 and Corollary 2 prove that
an increase in and may lead to an increase in the recycling price,
and according to Eq. (3), an increase in the recycling price will have a
positive effect on the increase in the recycling quantity. This result
shows that the decline rate of the recycling quantity due to the reduc-
tion of marketing efficiency is greater than the growth rate of the re-
cycling quantity caused by the increase in the recycling price. This also
implies that the IRP will prefer to attract consumers through Big Data
marketing rather than through the recycling price.

Corollary 4. Under scenario C and scenario F, the relationships of the
optimal steady-state strategies with the overconfidence coefficient k are as
follows:

(1) < 0p
k

¯
r

C
, > 0A

k
C̄

, > 0k
C̄

, < 0w
k

¯C
, < 0p

k

C̄
.

(2) < 0p
k

¯
r

F
, > 0A

k

¯F
, > 0k

¯F
, < 0w

k

¯F
, < 0p

k

¯F
.

Corollary 5. Under scenario C and scenario F, the relationships of the
steady-state recycling quantity with the overconfidence coefficient k are as
follows:

> > > >
k k

Q
k

Q
k

¯
0,

¯
0,

¯
0,

¯
0.

C F C F

Corollary 4 and Corollary 5 show that the investment level of Big
Data marketing and the proportion of parts of higher quality increase
with k, the wholesale price of parts and the sales price of products
decrease with k, and the IRPs overconfident behavior also contributes
to the increase in the recycling quantity. Interestingly, the result in
Corollary 4 is slightly different from the previous literature (Lu et al.,
2015; Xu et al., 2018). Xu et al. (2018) find that the higher the level of
overconfidence is, the higher the selling price that the overconfident
retailer charges; however, overconfidence does not harm the overall
performance of the supply chain. The reason for this difference is that
Xu et al. (2018) mainly focus on the FSC; additionally, most of the
literature ignores the impact of the recycler's overconfident behavior on
the RSC and CLSC. This result is also an extension of Lu et al. (2015).

6. Numerical analysis

Due to the complexity of profit functions, the impact of some key
parameters on profit cannot be directly ascertained analytically.
Therefore, in this section, the impacts of various parameters on the
profit of all CLSC members will be illustrated by using a numerical
experimental design. This section aims to gain qualitative insights into
the structures of the proposed policies and their sensitivity to key
parameters.

6.1. The impact of the cost coefficient on profit

Suppose that the basic parameter values are unchanged and are
those presented in Table 2. The impacts of and on the optimal
steady-state present values for all supply chain members in the three
scenarios are discussed in this section.

Figs. 2–4 show that the profit of the IRP and the manufacturer de-
creases with and , while the supplier’s profit increases with and .
The reason is that the reduction in technological innovation efficiency
and marketing efficiency leads to a reduction in the amount of recycling
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and a reduction in the proportion of parts of better quality, which has a
negative impact on the profit of the manufacturer and the IRP. How-
ever, the manufacturer needs to buy more new components from the
supplier due to the reduced recycling quantity of used components;
thus, the profit of the supplier increases.

The comparison of the three scenarios shows that the profit of the
IRP in scenario F is higher than that in the other two scenarios. This
result shows that overconfidence and the manufacturer’s cost-sharing
strategies are beneficial to the operation of the IRP. For the manu-
facturer, there are two thresholds for and . When < or < ,
the profit of the manufacturer in scenario C is higher than that in
scenario F and scenario N; when > or > , the profit of the
manufacturer in scenario F is higher than that in scenario C and
scenario N. This finding shows that when the operation efficiency and
technological innovation efficiency of the IRP are at a low level, the
cost-sharing strategy can make the IRP and the manufacturer achieve a
“win–win” situation. However, when marketing efficiency and tech-
nological innovation efficiency are at a high level, the cost-sharing
strategy make the marginal profit of the manufacturer less than the
marginal cost, which leads to a decrease in the profit of the manu-
facturer. Additionally, according to the above corollaries, the increase
in overconfidence and cost sharing will reduce the sales of new parts for
the supplier; thus, the profit of the supplier is the highest in scenario N,

and the profit in scenario C is higher than that in scenario F.

6.2. The impact of the cost-sharing rate on profit

To examine the impact of the cost-sharing rate on profit under
different scenarios, this section assumes that the values of the para-
meters are those in presented in Table 3. Additionally, VT

N is the total
optimal present value under scenario N,VT

C is the total optimal present
value under scenario C, andVT

F is the total optimal present value under
scenario F, where = + +V V V VT

N
P
N

M
N

S
N , = + +V V V VT

C
P
C

M
C

S
C and

= + +V V V VT
F

P
F

M
F

S
F . First, this section gives the trajectory of the total

profit of the CLSC with in the three scenarios, as shown in Fig. 5.
Then, this section discusses the impact of on the profit of each
member.

Fig. 5 shows that in scenario F, there exists a threshold . When
< , the total profit of the CLSC increases with ; when > , the

total profit of the CLSC decreases with . The comparison result of Fig. 5
shows that the total profit of the CLSC in scenario C is always higher
than that in scenario N. Additionally, only when the manufacturer’s
cost-sharing ratio is in a suitable range will the total profit in scenario F
be higher than that in scenario C; otherwise, the excessive cost-sharing
ratio will damage the total profit of the CLSC.

As indicated by Figs. 2–5, the profit of the IRP and the manufacturer
in scenario C is always higher than that in scenario N, and the sup-
plier’s profit in scenario C is always lower than that in scenario N.
Additionally, referring to the results of Corollaries 1–5, in both sce-
nario N and scenario C, each parameter has a consistent influence on
the profit of each member in the two scenarios. Therefore, to ensure the
simplicity of the figures, the effects of some parameters on the profit of
each member in scenario N will not be discussed in subsequent sec-
tions.

As shown in Fig. 6, the profit of the IRP always increases with , and
the supplier’s profit always decreases with . For the manufacturer,
when < , the profit increases with ; when > , the profit de-
creases with . This result implies that the cost-sharing strategy is al-
ways beneficial to the IRP but damages the supplier's profit. The
manufacturer needs to determine a suitable cost-sharing ratio to extract
more profit; otherwise, an excessive cost-sharing ratio will lead to in-
creased operating costs and lower profits. The size of the cost-sharing
ratio depends on the negotiation capabilities of the manufacturer and
the IRP.

Table 2
Basic parameter values (1).

cm cs m f g Q0 a b r µ k

1 1 2.5 20 2 4 1.5 2 2.5 0.8 0.1 0.2 0.8 0.4 0.4

20
25

30
35

40

20
25

30
35

40
4

6

8

10

12

θ

V

VP
N

VP
C

VP
F

Fig. 2. The impact of and on the IRP’s profit.

Fig. 3. The impact of and on the manufacturer’s profit.
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Fig. 4. The impact of and on the supplier’s profit.

Table 3
Basic parameter values (2).

cm cs m f g Q0 a b r µ k

1 1 2.5 20 2 4 1.5 2 2.5 0.8 0.1 0.2 0.8 0.4 30 30
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6.3. The impact of overconfidence on profit

This section focuses on the impact of overconfidence on profit, and
the values of some key parameters are assumed, as shown in Table 4.

Fig. 7 shows the relationship between the level of overconfidence
and the total profit of the CLSC. Since scenario N does not consider the
overconfidence factor, the total profit remains unchanged with the in-
crease in overconfidence k. In scenario C, the total profit of the CLSC
always increases with k. In scenario F, there is a threshold k ; when

<k k , the total profit of the CLSC increases with k; however, when
>k k , the total profit of the CLSC decreases with k. Next, this article

will illustrate the impact of overconfidence on the profit of each
member in scenario C and scenario F, as shown in Fig. 8.

Fig. 8 shows that for both scenario C and scenario F, the profit of
the IRP always increases with k and the profit of the supplier always
decreases with k. In scenario C, the manufacturer’s profit increases
with k. However, combined with the results of Figs. 7 and 8, the size of
threshold k has different effects on the profit of the manufacturer in
scenario F. In scenario F, when <k k , the manufacturer’s profit in-
creases with k; however, when >k k , the manufacturer’s profit de-
creases with k.

The results of Figs. 7 and 8 and Corollaries 1–5 show that the IRP’s
overconfidence prompts the IRP to exert more efforts on technological
innovation and Big Data marketing and enhances the profit of the IRP.
The increase in the recycling quantity and the increase in the propor-
tion of high-quality parts are also helpful in improving the profit of the
manufacturer. However, for the supplier, although the total recycling
quantity has increased due to the increase in overconfidence of the IRP,
this increase has also led to a decrease in the number of new parts
purchased by the manufacturer from the supplier, harming the interests
of the supplier. Notably, the degree of overconfidence of the IRP has a
different impact on the cost-sharing ratio and the profit of the manu-
facturer. Although the manufacturer’s cost-sharing strategy will further
encourage the IRP to invest more in technological innovation and Big
Data marketing, as the IRP’s overconfidence increases, the incentive
role of the cost-sharing strategy will be weakened, negatively affecting
the manufacturer’s interests.

6.4. The change in profit over time

To highlight the dynamic characteristics of the CLSC, the trajectory
of the profit of all members over time will be explored in this section.
The values of the parameters are assumed to be those presented in
Table 5. Notably, since the change trend of profit in scenario N is
consistent with that in scenario C, to make the figure more concise, this
section omits the change trajectory of profit in scenario N. When t
ranges from 0 to 40, the numerical result is that outlined in Fig. 9.

Fig. 9 shows that the profits of the IRP and the manufacturer
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Fig. 5. The impact of on the total profits of all CLSC members.
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Table 4
Basic parameter values (3).
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1 1 2.5 20 2 4 1.5 2 2.5 0.8 0.1 0.2 0.8 0.4 30 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
19.5

20

20.5

21

21.5

22

22.5

23

23.5

k

V VT
N

VT
C

VT
F

Fig. 7. The impact of k on the total profits of all CLSC.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

k

V

VM
C VM

F VS
C VS

F VP
C VP

F

Fig. 8. The impact of k on the profits of all members.

Z. Xiang and M. Xu Computers & Industrial Engineering 145 (2020) 106538

10



increase with time and then show a stable trend in scenario C and
scenario F, while the profit of the supplier decreases over time and
then shows a stable trend.

Based on Figs. 2–9 and the results of Corollaries 1–5, the IRP’s
overconfidence prompts the IRP to exert more efforts on technological
innovation and Big Data marketing, which is beneficial to the IRP and
the manufacturer. This result is consistent with the study of Lu et al.
(2015). Differently, however, the supplier will lose part of his/her
profits due to the reduction in components purchased by the manu-
facturer from the supplier. Additionally, the high degree of over-
confidence of the IRP will inhibit the incentive of the cost-sharing
contract and increase the operating costs of the manufacturer; thus,
only by finding a suitable cost-sharing range can a “win–win” situation
be achieved for the manufacturer and the supplier. Although over-
confident behavior and the cost-sharing contract may cause the supplier
to lose some profits, they will increase the overall value of the CLSC
system.

7. Conclusions and limitations

In this paper, we study decision-making problems for members of a
CLSC system in the “Internet+” era. The research content and future
research directions of this paper are summarized and discussed below.

7.1. Significances

Managing CLSCs with Big Data technologies in an “Internet+” en-
vironment is a research topic that has attracted growing interest be-
cause Big Data technologies can improve the efficiency of the circular
economy. The objective of this paper is to explore the decision-making
problems of CLSC members, including pricing and irrational invest-
ment, in the Big Data environment.

This research makes the following contributions. Our work extends
traditional static one-stage remanufacturing CLSC models (Ramani &
De Giovanni, 2017; Reimann et al., 2019) to a dynamic two-stage re-
manufacturing CLSC model consisting of one manufacturer, one sup-
plier and one IRP. Considering the dynamic nature of the recycling
model in a Big Data environment, we revised the recycling function
introduced by Guo et al. (2018) to highlight the dynamic characteristics

of the recycling process. In the model, we also consider several influ-
encing factors, such as the quality levels of recycled products, Big Data
marketing and technological innovations of the IRP. Big Data marketing
and technological innovation can serve two purposes: highlighting the
dissemination nature of the Internet environment and improving re-
cycling efficiency. Additionally, this paper compares the equilibrium
solutions in three scenarios when IRPs show overconfident behaviors,
and it explores the impact of key parameters on the equilibrium solu-
tions. Our research confirms that the participation of the IRP and the
supplier makes decision problems more complicated.

We also provide numerical examples to demonstrate the effective-
ness of our model. Our meaningful results offer a decision basis and
theoretical guidance to help CLSC members implement cooperation
strategies and pricing policies in different game scenarios in practice.

7.2. Conclusions

The results of this research can be summarized as follows:

1. The IRP’s overconfidence prompts it to exert more efforts on tech-
nological innovations and Big Data marketing and enhances the
profit of the IRP. Increased investment in technological innovation
and Big Data marketing brings two benefits to CLSC members: an
improved recycling quantity and profit margin for the IRP and re-
duced production costs and recycling costs for the supplier, the
manufacturer and the IRP. Additionally, the wholesale price and
sales price will be reduced accordingly due to the reduction in
production costs.

2. In this paper, the sensitivity analysis obtains some interesting re-
sults. Since the overconfidence of the IRP indirectly affects the
production costs of the supplier and the manufacturer, the wholesale
price and the sales price decrease as the level of overconfidence
increases. This result is slightly different from the findings of Lu
et al. (2015) and Xu et al. (2018), who did not consider the impact
of the recycling platform on the RSC. Additionally, the IRP’s re-
cycling price increases with the technological innovation cost
coefficient when the Big Data marketing cost coefficient is lower
than a threshold but declines with the technological innovation cost
coefficient when the Big Data marketing cost coefficient is high. The
size of the threshold of the Big Data marketing cost coefficient de-
pends on the system parameters.

3. Due to the IRP’s overconfident behavior, the quantity and quality of
recycled products improve. Hence, such overconfidence is beneficial
for the IRP and the manufacturer. However, the improved quality
and quantity of recycled products have a negative impact on the
sales of the supplier and then have a detrimental effect on the
supplier.

4. A suitable cost-sharing ratio can further stimulate the IRP to exert
more efforts on technological innovations and Big Data marketing
and achieve a “win–win” situation for the manufacturers and the
IRP. Notably, however, an excessive level of confidence will inhibit
the incentives of the cost-sharing strategy, reducing the profit of the
manufacturer. Interestingly, when marketing efficiency and tech-
nical efficiency are at a high level, the cost-sharing strategy will also
have a negative impact on the profit of the manufacturer. The
reason is that when marketing efficiency and technological in-
novations are at a higher level, the IRP can easily achieve its busi-
ness goals; additionally, in this case, the cost-sharing strategy will
have a limited incentive effect, which will cause the marginal cost of

Table 5
Basic parameter values (4).

cm cs m f g Q0 a b r µ k 0

1 1 2.5 20 2 4 1.5 2 2.5 0.8 0.1 0.2 0.8 0.4 30 30 0 0.4
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Fig. 9. The impact of t on the profits of all members.
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the manufacturer to be greater than the marginal benefit.
Additionally, although the platform's overconfidence and cost-
sharing strategies may damage the supplier’s profit, the total profit
of the CLSC increases (compared to the benchmark model).

7.3. Limitations and future research

Importantly, this research has a few limitations. First, this paper
ignores the complexity of a CLSC system by considering only a single
channel. However, the single-channel CLSC model can be extended to a
dual-recycling channel model or a multiple-recycling channel model in
future research. Second, for simplicity, this paper assumes a linear
demand function; in realis, however, demand follows a variety of

distributions. More complex demand functions will be considered in our
future work to make the model more consistent with reality. Third, we
consider only a single contract in the model. In fact, in a complex CLSC,
how the supply chain leader designs incentives to motivate all members
and achieve the Pareto optimality of the supply chain is also an inter-
esting research topic that warrants exploration.
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Appendix A

Proof of Proposition 1. According to the optimal control theory, the Hamilton functions for the IRP, manufacturer and supplier are obtained as Eqs.
(8), (9) and (10), respectively. Additionally, for the convenience of writing, the time t is omitted below.

The IRP’s Hamilton function is:

= + + + + +

+ + +

H p A u f Q ap b g Q ap b

p Q ap b u µA

( ( ), ( ), , ) ( ) (1 )( )

( ) ( )
P
N

r P
N

r r

r r
A

P
N

0 0

0 2 2
2 2

(A.1)

The manufacturer’s Hamilton function is:

= + + + +H p u p c w p w f Q ap b u µA( , ) ( )( ) ( ) ( ) ( )M
N

M
N

m r M
N

0 (A.2)

The supplier’s Hamilton function is:

= + + + + +
+

H w u w m c p Q ap b m g Q ap b
u µA

( , ) ( )( ( )) ( )(1 )( )
( )

S
N

S
N

s r r

S
N
0 0

(A.3)

The equilibrium conditions of Eq. (A.1) are:

= + =H
p

a f g a Q ap b(1 ) 2 0P
N

r
r0

(A.4)

= =H
A

u µ A 0P
N

P
N

(A.5)

= =H
u

AµP
N

P
N (A.6)

= = + +u ru H r u f g g p b( ) (( ) )P
N

P
N P

N

P
N

r (A.7)

By substituting Eqs. (A.4)–(A.7) into Eq. (A.2), the following is easily obtained:

= + +p w c( )
2

N
N

m

(A.8)

Similarly, by substituting Eqs. (A.4)–(A.8) into Eq. (A.3), we obtain the following:

= + + + +w a f g Q ag b t m c c( )( ) ( ( )) ( )
2

N
N N N

m s
2

0

(A.9)

By substituting Eqs. (A.4)–(A.8) into Eq. (A.1) and taking the derivative of Eq. (A.1) with respect to , we obtain the following:

= + +f g ag b Q
f g a

( )( )
2 ( )

N
N

0
2 (A.10)

Substituting Eq. (A10) into Eqs. (A.4) and (A.5), we obtain:

= +p f g g a b Q
a

(( ) )
2r

N
N N

0
(A.11)

=A u µN P
N

(A.12)

Eq. (A.13) can be obtained by inserting Eq. (A.12) into Eq. (A.6):

= =H
u

u µP
N

P
N

P
N 2

(A.13)
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Taking the derivatives of both sides of Eq. (A.13) with respect to t, we obtain:

= u µP
N 2

(A.14)

Substituting Eq. (A.7) into Eq. (A.14) and then combining Eqs. (A.8)–(A.12), we obtain the following:

+ + + = +
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r
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0

2 (A.15)

By solving the eigenvalue of Eq. (15), the expression of t( ) can be obtained. Moreover, based on the previous assumption =(0) 00 and
=lim ¯t , we obtain the following:

= +t( ) ( ¯ )e ¯N N t N
0 N (A.16)

where = < 0N
ar
a2

N , = f g a( ) 22 , = + +a a r b µ( ( 2 ) 4 )N
2 2 2 , and = +

+ +
¯N ag Q bµ

r a f g r a b µ
( )

2 ( ) ( ) ( )
0 2

2 2 2 2 .
Substituting Eqs. (A.12) and (A.16) into Eq. (A.6), the expression of u t( )P is calculated as follows:

= +u t
µ
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where = +
+ +

uP̄
N ag Q b

r a f g r a b µ
( )

2 ( ) ( ) ( )
0

2 2 2 2 . When t , the steady state of the system is u( ¯ , ¯ )N
P
N . Substituting u( ¯ , ¯ )N

P
N into Eqs. (A.8)–(A.12),

the optimal steady-state strategies for all members are given as follows:
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The optimal steady-state present values of profit for all members without considering time are as follows.
The optimal steady-state present values of profit for the IRP in scenario N are as follows:
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The optimal steady-state present values of profit for the manufacturer in scenario N are as follows:

= + + +V p c w p w f Q ap b( ¯ ¯ )( ¯ ) ( ¯ ) ¯ ( ¯ ¯ )M
N N

m
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The optimal steady-state present values of profit for the supplier in scenario N are as follows:

= + + + + +V w m c p Q ap b m g Q ap b( ¯ )( ¯ ¯ ( ¯ ¯ )) ( )(1 ¯ )( ¯ ¯ )S
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Thus, Proposition 1 is proven.

Appendix B

The proofs of Proposition 2 and Proposition 2 are similar to that of Proposition 1; thus, the proof process is omitted. In scenario C, the
expressions of t( )C and u t( )P

C are as follows:

= +t( ) ( ¯ )e ¯C C t C
0 C (B.1)
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The steady state of system u( ¯ , ¯ )C
P
C is given by:
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Substituting u( ¯ , ¯ )C
P
C into Eqs. (25)–(29), the optimal steady-state strategies for all members in scenario C are given by:
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The optimal steady-state present values of profit for all members without considering time in scenario C are as follows.
The optimal steady-state present values of profit for the IRP in scenario C are as follows:
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The optimal steady-state present values of profit for the manufacturer in scenario C are as follows:
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The optimal steady-state present values of profit for the supplier in scenario C are as follows:
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In scenario F, the expressions of t( )F and u t( )P
F are as follows:
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The steady state of system u( ¯ , ¯ )F
P
F in scenario F is given as follows:
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Substituting u( ¯ , ¯ )F
P
F into Eqs. (39)–(43), the optimal steady-state strategies for all members in scenario F are given as follows:
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The optimal steady-state present values of profit for all members without considering time in scenario F are as follows.
The optimal steady-state present values of profit for the IRP in scenario F are as follows:
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The optimal steady-state present values of profit for the IRP in scenario F are as follows:
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The optimal steady-state present values of profit for the supplier in scenario F are as follows:
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